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We present an extension of the density-functional theory (DFT) formalism for
lattice gases to systems with internal degrees of freedom. In order to test
approximations commonly used in DFT approaches, we investigate the statics
and dynamics of occupation (density) profiles in the one-dimensional Potts
model. In particular, by taking the exact functional for this model we can
directly evaluate the quality of the local equilibrium approximation used in time-
dependent density-functional theory (TDFT). Excellent agreement is found in
comparison with Monte Carlo simulations. Finally, principal limitations of
TDFT are demonstrated.

KEY WORDS: Density functional theory; local equilibrium approximation; non-
equilibrium dynamics; potts model; lattice gas kinetics.

1. INTRODUCTION

Density functional theory (DFT) and its time-dependent variant (TDFT)
are powerful methods to derive phase diagrams and the kinetics of phase
transformations (1–3) in condensed matter systems, in particular in the pres-
ence of confinement effects. Particularly useful are these theories for lattice
systems, (4, 5) allowing us to deal with the discrete nature of structures
encountered, e.g., in the description of metallic alloys, adsorbate layers,
and complex pattern formation on atomic scales.

In the case where many ordered phases can coexist one is lead to
include internal degrees of freedom into the DFT approach. As a



prominent model we will consider in this work the q-state Potts model,
which has a q-fold degenerate ground state. (6) The non-equilibrium dynamics
of that model reflects the coarsening of domains following a quench from
the disordered homogeneous phase to a system with long-range order seen in
binary alloys, liquid crystals, magnetic bubbles, Langmuir films and soap
bubbles.(7) The Potts model (in the limit q Q 1) is isomorphic to a site-bond
percolation problem(8, 9) and for q=2 it corresponds to the Ising model.(10)

There are interesting experimental realizations for q=3 (e.g., Kr on
Graphite(11)), q=4 and q=.

(12) (froths and metallic grains).
In this paper, based on the exact density functional for the one-

dimensional q-state Potts model, (13) we investigate the quality of various
approximations often employed in DFT and TDFT. After presenting a
general scheme for treating systems with internal degrees of freedom, we
first consider the mean spherical approximation (MSA) for the equilibrium
properties, and show how it compares with a mean-field approach and the
exact solution. We then derive the TDFT (14) for the one-dimensional Potts
model and, as an application, study the smoothening of an initial sharp-
kink density profile. Let us note that this TDFT differs in many respects
from the Runge–Gross theory (15) for electronic systems in a time-varying
external field, one major difference being that the present approach
assumes stochastic, overdamped dynamics. The basic techniques to set up a
TDFT for classical systems are reviewed in refs. 3 and 16. By comparison
with Monte-Carlo simulations we show that the TDFT provides a signifi-
cant improvement over kinetic mean field theory. Moreover, since in our
case the TDFT is based on an exact density functional, the differences
between the simulated and DFT results allow us to perform a specific test
of the local equilibrium approximation used in the TDFT. Finally, we
discuss principal limitations of the TDFT, where only the density profile is
used to specify a non-equilibrium state of the system. This amounts to an
incorrect account of correlations.

2. DFT FOR LATTICE GASES WITH INTERNAL DEGREES OF

FREEDOM

We consider a lattice gas where each site i is either vacant (xa
i =0 for

all a) or singly occupied by a particle in one of q internal states (note that
this corresponds to a generalized Potts model with q+1 states). If state
a ¥ {1,..., q} is realized, xa

i =1 and xb
i =0 for b ] a. Occupation numbers

therefore satisfy xa
i xb

i =xa
i dab. The Hamiltonian including two particle

interactions Fab
i, j and site energies Ea

i due to an external potential is given by

H=1
2 C

i ] j
C
a, b

Fab
i, jx

a
i xb

j +C
i, a

Ea
i xa

i . (1)
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The formal steps of DFT for fluids or lattice gases without internal degrees
of freedom can be carried over to the case considered here. One arrives at a
variational principle based on the functional for the grand canonical
potential

W[p]=F[p]+C
i, a

Ẽa
i pa

i (2)

where Ẽa
i =Ea

i − ma, ma being the chemical potential fixing the mean total
occupation p̄a of state a, p={pa

i } and pa
i =Oxa

i P are the average occupa-
tion numbers. The free energy functional is decomposed into an ‘‘ideal’’
part describing a non-interacting lattice gas,

Fid[p]=5C
i, a

pa
i ln pa

i +C
i

11 − C
a

pa
i
2 ln 11 − C

a

pa
i
26 (3)

and an excess part Fex[p] due to interactions (for convenience we set
kBT=1). The equilibrium occupation is then obtained by minimizing W[p]
with respect to the pa

i . The corresponding equations “W/“pa
i =0 determin-

ing the equilibrium profile are called structure equations. The minimum
value of W[p] is the grand-canonical potential at equilibrium.

Higher order derivatives of W[p] with respect to the pa
i taken at the

equilibrium profile yield a hierarchy of direct correlation functions. (2) In
particular, by differentiating the structure equation, the inhomogeneous
Ornstein–Zernike equation

c̃ab
ij +C

k, c

c̃ac
ik pc

khcb
kj =hab

ij (4)

can be derived, (4) which relates the direct correlation function c (2)
ia, jb=

−“
2Fex[p]/“pa

i “pb
j entering c̃ab

ij =c(2)
ia, jb − dij/[1 − ;m pm

i ] to the pair corre-
lation function hab

ij =gab
ij − 1=(1 − dij)Oxa

i xb
j P/Oxa

i POxb
j P. In the limit q=1

the known result for systems without internal degrees of freedom is
recovered.

3. APPLICATION TO THE 1D POTTS MODEL

In the following, standard approximation schemes used in DFT are
tested based on the one-dimensional Hamiltonian (1 [ i [ M)

H= C
i, a, b

vab
i xa

i xb
i+1+C

i, a

Ẽa
i xa

i , (5)

which for vab
i =Vdab reduces to the standard Potts model. (6)
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3.1. Exact Density Functional

For one-dimensional lattice gases with short range interactions, a
general scheme for deriving exact density functionals based on Markov
chains has recently been developed in ref. 13. This approach in particular
provides an exact functional for the Potts model, which has been derived
earlier by Percus. (17) The functional can be written as

W[p]= C
M

i=1

3 C
q

a=1
Ẽa

i pa
i + C

q

a, b=1
vab

i Cab
i

+C
b

5C
a

Cab
i log

Cab
i

pb
i − 1

+1 pb
i − 1 − C

a

Cab
i
2 log 11 −

; a Cab
i

pb
i − 1

26

+C
a

1 pa
i − C

b

Cab
i
2 log 1pa

i − ;b Cab
i

1 − ;b pb
i − 1

2

+11 − C
b

(pb
i − 1+pb

i )+C
a, b

Cab
i
2 log 11 −

;b pb
i − ; a, b Cab

i

1 − ;b pb
i − 1

24 , (6)

where the correlators

Cab
i =Oxa

i − 1xb
i P (7)

have to be expressed by the mean occupation numbers {pc
k}. This is

achieved by solving the correlator equations (13)

Cab
i =e−vab

i
(pa

i − ; c Cac
i )(pb

i − 1 − ; d Cdb
i )

1 − ; c (pc
i − 1+pc

i )+; c, d Cdc
i

. (8)

A simpler expression for the functional is obtained if the vacancies are con-
sidered as an additional Potts state with index a=0 (and vb0

i =v0b
i =0),

whereby the lengthy entropic part reduces to ;M
i=1 ;q

a, b=0 Cab
i log(Cab

i /pa
i ).

In the fully occupied case (;a xa
i =1) the solution of Eqs. (8) requires a

careful limiting procedure by letting the vacancy concentration go to zero.
The structure equations read

e−Ẽ
a
i =

11 − C
b

pb
i
21pa

i − C
c

Cac
i
21pa

i − C
d

Cda
i+1

2 1
pa

i

11 − C
b

(pb
i − 1+pb

i )+C
c, d

Cdc
i
211 − C

b

(pb
i +pb

i+1)+C
c, d

Cdc
i+1

2
. (9)
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Fig. 1. Comparison of the occupation numbers p1
0, p1

1, and p2
1 in dependence of interaction

strength V for two q values in the MSA approximation ((a), dashed lines) and mean field
approximation ((b), dashed lines) with the exact solution (solid lines) for n̄=0.8 and E=1.
The corresponding MSA and mean field results for p2

0 (not shown) are always close to the
exact solution.
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Fig. 2. (a) Comparison of the evolution of an initial kink profile calculated using TDFT
(lines) with Monte Carlo simulations (points) for a system with 32 particles, q=4 and
V=−2. Boundary conditions are pa

1=da, 1 and pa
M=da, 4. Results are shown for t=1, 2, 4, 8

and the equilibrium density (thick lines). Results for a=4 (not shown) are mirror images of
those for a=1 with respect to the center site i=16. (b) Comparison of mean field theory
(dotted lines) with the simulations (solid lines) for the same system as shown in (a). Equilib-
rium solutions are indicated with thick lines.
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By solving this equation numerically we obtain the exact density profiles.
(For the example of Eq. (15), results are shown in Fig. 1.)

3.2. Mean Spherical Approximation (MSA)

In the following the excess density functional will be expanded around
a homogeneous reference state, pa

i =p̄a. (18) For simplicity, we here consider
the standard Potts case vab

i =Vdab, and set p̄a=p̄ for all a.
Defining Dpa

i =pa
i − p̄, DW[p]=W[p] − W[{p̄}], etc., we can write

DW[p]=DFid[p]+DFex[p]+C
i, a

Ẽa
i Dpa

i . (10)

When retaining only terms up to second order in the excess free energy
functional, we find c (2)

ab (|i − j|, p̄)=c(2)
ia, jb

DFex[p]=−C
i, a

c (1)(p̄) Dpa
i − 1

2 C
i, a, j, b

c (2)
ab (|i − j|, p̄) Dpa

i Dpb
j , (11)

where c (1)(p̄) can be subsumed into the chemical potential. For our choice
of interactions with translational symmetry, gab

ij =gab(|i − j|), and the direct
correlation function c̃ ab

ij =c(2)
ab (|i − j|, p̄) − dij/[1 − qp̄] can be split into two

parts,

c̃ ab
ij =dabc1(|i − j|)+(1 − dab) c2(|i − j|). (12)

where in the MSA approximation,

c1(|l|)=˛−V, |l|=1
0, |l| \ 2

and c2(|l|)=0 for |l| \ 1 (13)

and gab(l=0)=0. The two unknowns c1(0) and c2(0) are found using the
Ornstein–Zernike equation (4), which yields

c1(0)=
1
p̄

−
1
q

[A+(q − 1) B]

c2(0)=−
1
p

[A − B]

with A=
`1+[2Vp̄(1 − qp̄)]2

p̄(1 − qp̄)
, B=

`1+(2Vp̄)2

p̄
.

(14)
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As an example, we now consider the special case of zero external
energies for the Potts states a=2,..., q and alternating external energies for
the Potts state a=1,

Ea
i =˛E, i even and a=1

0, otherwise
(15)

and assume ma=m independent of a. Due to the symmetry of this external
potential, each occupation number pa

i is equal to one of the four represen-
tatives p1

0, p2
0, p1

1, p2
1, and the mean particle density per site is

n̄=1
2 [p1

0+p1
1+(q − 1)(p2

0+p2
1)]. (16)

We consider the functional

Y[p] —
1

M
(DW[p]+Fid[p̄])

=
1
2

[p1
0 ln p1

0+p1
1 ln p1

1+(q − 1)(p2
0 ln p2

0+p2
1 ln p2

1)

+(1 − p1
0 − (q − 1) p2

0) ln(1 − p1
0 − (q − 1) p2

0)

+(1 − p1
1 − (q − 1) p2

1) ln(1 − p1
1 − (q − 1) p2

1)]

−
1
4
51c1(0)+

1
1 − qp̄

2 ((Dp1
0)2+(Dp1

1)2+(q − 1)((Dp2
0)2+(Dp2

1)2))

+1c2(0)+
1

1 − qp̄
2 (q − 1){2(Dp1

0 Dp2
0+Dp1

1 Dp2
1)

+(q − 2)((Dp2
0)2+(Dp2

1)2)}

− 4V(Dp1
0 Dp1

1+(q − 1) Dp2
0 Dp2

1)6

+
1
4

E[p1
0 − p1

1 − (q − 1)(p2
0+p2

1)+2(q − 1) p̄]

− meff
51

2
(p1

0+p1
1+(q − 1)(p2

0+p2
1)) − n̄6 . (17)

with meff=m − E/2+c(1)(p̄). The structure equations are obtained by setting
the derivatives of Y[p] with respect to p1

0, p2
0, p1

1, p2
1 equal to zero. These

equations are solved numerically subject to a fixed n̄ in Eq. (16) (which is
equivalent to “Y/“meff=0). Ordinary mean field theory can be recovered
from the functional by setting c1(0)=c2(0)=0.
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In Fig. 1 the occupation numbers for the MSA approximation and the
mean field theory are compared with the exact results based on Eq. (9).
Without interactions (V=0) the external potential yields mean occupation
numbers p1

0 < p1
1=p2

1 < p2
0, p1

0=e−Ep2
0. When a repulsive interaction V > 0

is switched on, the fact that p1
1 > p2

1 induces an increasing occupation dif-
ference. For larger q this effect becomes less pronounced due to the
increasing contribution of the entropy to the free energy per site.

As expected, the MSA is an improvement over the simple mean field
approximation especially for higher values of the interaction parameter and
high overall densities n̄. Moreover, the quality of the MF-results can be
shown to improve when E is decreased. A notable result is the improvement
of the two approximations for larger q, reflecting the fact that mean-field
descriptions should become exact in the limit q Q ..

3.3. Kinetics of Density Profiles

So far we have considered density profiles at equilibrium. In order to
account for the time evolution of non-equilibrium profiles we will make use
of the local equilibrium approximation for the probability distribution
P(x, t) to find a configuration x={xa

i } at time t. In this time-dependent
density functional theory (TDFT), (3, 5) the deviations of P(x, t) from the
Boltzmann equilibrium distribution are described by a one-particle time-
dependent effective potential ha

i (t),

P(x, t)=
1

Z(t)
exp 5− H(x) − C

i, a

ha
i (t) xa

i
6 . (18)

The effective potential is the unique potential, which yields the instanta-
neous density profile pa

i (t) according to the equilibrium DFT. Accordingly,
the unknown field h in Eq. (18) can be determined by the ‘‘structure equa-
tion’’ ha

i (t)=−“W[p]/“pa
i with W[p] from Eq. (2). It is then clear that in

this approach all equilibrium relations between occupational correlators
Oxa

i xb
j ...P and the density p also apply at each time instant to the non-

equilibrium situation [in particular Eq. (8)].
To test the quality of the TDFT, we consider a lattice with all sites

being occupied (n̄=1) and a nonconserved dynamics, where a given Potts
state a on lattice site i can change to any other state b ] a with a rate
wab

i (x) that depends on the current state x due to interactions. From the
master-equation describing this stochastic process, we derive the equation
of motion for the occupation profile,

dpa
i

dt
=C

b

O(xb
i − xa

i ) wab
i Pt (19)
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where O...Pt denotes an average with respect to the non-equilibrium distri-
bution P(x, t). For the rates we choose a generalized Glauber form,

wab
i (x)=(1 − tanh[(xb

i − 1xb
i − xa

i − 1xa
i ) V/2])

× (1 − tanh[(xb
i+1xb

i − xa
i+1xa

i ) V/2]), (20)

which satisfies the condition of detailed balance. (20)

When substituting Eq. (20) in (19) further evaluation is made possible
by noting that the factor in front of V/2 in the argument of tanh is always
−1, 0, or 1, so that it can be taken out from the tanh function. With the
help of the Markov property, three-point correlators can exactly be
reduced to two-point correlators, e.g., Oxa

i − 1xb
i xc

i+1P=Cab
i Cbc

i+1/pb
i . After

some algebra we then find

dpa
i

dt
=1 − qpa

i +tanh(V/2) 52pa
i − pa

i − 1 − pa
i+1

+C
b

(Cbb
i − Caa

i +Cbb
i+1 − Caa

i+1)6

+tanh2(V/2) C
b

5 1
pb

i

(Cab
i − Cbb

i )(Cba
i+1 − Cbb

i+1)

−
1

pa
i

(Cba
i − Caa

i )(Cab
i+1 − Caa

i+1)6 . (21)

Equations (21) together with the correlator equations (8) form a
complete set of equations for the time evolution of density profiles and can
be solved numerically for a given initial condition.

As an example, we consider an initially sharp kink profile at time
t=0, where the left part of the system is in Potts state a=1 and the right
part in Potts state a=q with fixed boundary sites i=1 and M in Potts
states a=1 and q, i.e., xa

1=da, 1 and xa
M=da, q. In Fig. 2a we compare the

time evolution of the profile with the results from continuous-time Monte-
Carlo simulations. The agreement is excellent for all times until for large
times the TDFT solution and the simulations both yield the correct equi-
librium profile. In order to obtain this agreement, it was necessary to adjust
the time scale according to tTDFT=0.85 tMC. The significant improvement
over a simple mean-field treatment corresponding to factorization of all
correlators in Eq. (21), i.e., Cab

i =pa
i − 1pb

i , etc., can be seen by comparing
Fig. 2a with Fig. 2b. The mean-field approximation is insufficient from the
beginning and does not provide the correct equilibrium profile for long
times.

Static and Time Dependent Density Functional Theory 1123



3.4. Basic Limitations of TDFT

Since in the kinetic equation of the TDFT only the densities (mean
occupation numbers) enter, the TDFT can not distinguish between states
with the same density profile but different correlations. As a consequence,
the time evolution of a non-equilibrium state with the equilibrium density
profile cannot be captured. This issue may become important when con-
sidering memory effects in systems with slow relaxations, as for example
glassy systems. The observables used to characterize the thermodynamic
states of such systems (as, e.g., density) may have equal values initially, but
very different time evolutions depending on the systems’ history.

To illustrate this principal failure of the TDFT, we generate states of
the Potts model with the same mean occupation numbers but different
correlations for the same system as in the previous chapter. To achieve this,
we first determine the equilibrium profile pa

i for a system with interactions
from the structure equations (9). This profile is also the equilibrium profile
for a system without interactions (V=0) and external potential
Ea

i =−log pa
i . Hence by taking the equilibrium state of the non-interacting

system as initial non-equilibrium state for the interacting system, we can
study by Monte-Carlo simulations the time development of a density
profile that according to TDFT cannot change.

Figure 3 shows the effect for V=−4 and q=4. Although the mean
occupation numbers at time t=0 are the same as in the equilibrium state
reached for t 4 1024, there is a pronounced change in the occupation
profile at intermediate times. These changes are due to the fact that in the
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Fig. 3. Evolution of a density profile starting from the equilibrium density, but with non-
equilibrium correlators (see text) for V=−4 and q=4. The system quickly reaches the state
with maximum deviation from the equilibrium density at t % 1 and then relaxes to the original
equilibrium density profile. Only the left half of the system is shown.
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initial state the correlations between occupation numbers are not the equi-
librium ones. The configurations with large statistical weights in the initial
state exhibit stronger short-wavelength fluctuations and in order for the
correlations to build up, the system has to pass through intermediate states
with a non-equilibrium profile.
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